

Welcome To retdec-python’s Documentation!

retdec-python [https://github.com/s3rvac/retdec-python] is a Python library and tools providing easy access to the retdec.com [https://retdec.com] decompilation service through their public REST API [https://retdec.com/api/].

Contents

	Quickstart
	Requirements

	Installation

	Prerequisites

	Library vs Scripts

	Library
	Organization

	Authentication

	Error Handling

	Decompiler

	Fileinfo

	Test

	Scripts
	Authentication

	Decompiler

	Fileinfo

	Contributing
	Coding Style

	Testing

	Make Targets

	Status
	Decompiler

	Fileinfo

	Test

Indices

	Index

	Module Index

Quickstart

This page gives an overview of the library and tools to get you started.

Requirements

	Python >= 3.3 (CPython or PyPy)

	requests [http://docs.python-requests.org] module for making HTTPS calls to the retdec.com API [https://retdec.com/api/]

Installation

The recommended way of installing is from Python Package Index [https://pypi.python.org] (PyPI) with pip [http://www.pip-installer.org/]:

$ pip install retdec-python

This will install the latest stable version, including all dependencies. You can also install the latest development version directly from GitHub:

$ pip install git+https://github.com/s3rvac/retdec-python

Prerequisites

To be able to actually use the library and scripts, you need to register [https://retdec.com/registration/] at retdec.com [https://retdec.com]. After that, log in [https://retdec.com/login/] and click on Account [https://retdec.com/account/]. There, you will find your API key, which is used for authentication.

Attention

Be careful not to disclose your API key to anyone! You have to keep it a secret [https://retdec.com/api/docs/essential_information.html#authentication].

Library vs Scripts

retdec-python [https://github.com/s3rvac/retdec-python] provides both a Python library and scripts. You can either incorporate the library in your own scripts:

from retdec.decompiler import Decompiler

decompiler = Decompiler(api_key='YOUR-API-KEY')
decompilation = decompiler.start_decompilation(input_file='file.exe')
decompilation.wait_until_finished()
decompilation.save_hll_code()

or you can use the provided scripts for stand-alone file analyses or decompilations:

$ decompiler -k YOUR-API-KEY file.exe
v23bmYb67R

Waiting for resources (0%)... [OK]
Pre-Processing:
 Obtaining file information (5%)... [OK]
 Unpacking (10%)... [OK]
Front-End:
 Initializing (20%)... [OK]
[..]
Done (100%)...

Downloading:
 - file.c

Either way, file.c then contains the decompiled C code:

$ cat file.c
//
// This file was generated by the Retargetable Decompiler
// Website: https://retdec.com
// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>
//

#include <stdio.h>
[..]

The library provides support for the decompilation [https://retdec.com/api/docs/decompiler.html], fileinfo [https://retdec.com/api/docs/fileinfo.html], and test [https://retdec.com/api/docs/test.html] services. For a more detailed list, see the status [https://retdec-python.readthedocs.io/en/latest/status.html] page.

Next, we describe the library in a greater detail. If you wish to learn more about the provided scripts, continue here instead.

Library

This page describes the retdec-python [https://github.com/s3rvac/retdec-python] library and its API.

Organization

The base package is retdec. Everything that the library provides is inside this package.

Authentication

The library needs to authenticate you to retdec.com [https://retdec.com]. To specify your API key, either pass it as a parameter when creating a resource:

decompiler = retdec.decompiler.Decompiler(api_key='YOUR-API-KEY')

or set the RETDEC_API_KEY environment variable:

$ export RETDEC_API_KEY=YOUR-API-KEY

An advantage of the environment variable is that you do not need to specify the API key every time you use the library:

decompiler = retdec.decompiler.Decompiler()

Error Handling

The library uses exceptions to signalize errors. The base class is retdec.exceptions.RetdecError, which you can use to catch all custom exceptions raised by the library:

try:
 # ...
except retdec.exceptions.RetdecError as ex:
 # Handle the error.

You can also catch specific exceptions, e.g. retdec.exceptions.AuthenticationError, and react on them. See the retdec.exceptions module for a list of all custom exceptions.

Decompiler

The retdec.decompiler module provides access to the decompilation service [https://retdec.com/api/docs/decompiler.html]. It allows you to decompile binary files into a high-level language representation, such as C.

Creating a Decompiler

The decompiler is represented by the retdec.decompiler.Decompiler class:

decompiler = retdec.decompiler.Decompiler(api_key='YOUR-API-KEY')

Starting a Decompilation

To start a decompilation of a file, call start_decompilation() on the created decompiler:

decompilation = decompiler.start_decompilation(input_file=FILE)

FILE is either a path to the file or a file-like object. For a complete list of parameters that you can use when starting a decompilation, see the description of start_decompilation().

The returned object is an instance of retdec.decompilation.Decompilation.

Waiting For the Decompilation To Finish

After the start_decompilation() call above returns, the decompilation has been automatically started. To wait until it finishes, call wait_until_finished():

decompilation.wait_until_finished()

If you want to track the decompilation progress (e.g. by showing a progress bar or displaying the log), you can pass a callback function to wait_until_finished():

def show_progress(decompilation):
 print(decompilation.get_completion())

decompilation.wait_until_finished(
 callback=show_progress
)

When the status of the decompilation changes (e.g. it moves to another phase), the callback is automatically called with the decompilation being passed as its parameter.

Downloading Outputs

To obtain the generated high-level language (HLL) code as a string, call get_hll_code():

print(decompilation.get_hll_code())

Alternatively, you can call save_hll_code(), which obtains and saves the generated HLL code into the given directory:

decompilation.save_hll_code('/home/user/downloads')

Apart from obtaining the HLL code, you can also get the disassembled code, control-flow graphs, call graph, archive with all the outputs or, in the c mode, the compiled version of the input C file. See the description of Decompilation for more details.

For a complete example, take a look the retdec/tools/decompiler.py [https://github.com/s3rvac/retdec-python/blob/master/retdec/tools/decompiler.py] file. It is an implementation of the Decompiler script.

Fileinfo

The retdec.fileinfo module provides access to the file-analyzing service [https://retdec.com/api/docs/fileinfo.html]. It allows you to obtain information about binary files.

Creating an Analyzer

The analyzer is represented by the retdec.fileinfo.Fileinfo class:

fileinfo = retdec.fileinfo.Fileinfo(api_key='YOUR-API-KEY')

Starting an Analysis

To start an analysis of a file, call start_analysis() on the created analyzer with a file to be analyzed:

analysis = fileinfo.start_analysis(input_file=FILE)

FILE is either a path to the file or a file-like object. Optionally, you can pass the following parameters:

	verbose=True – makes the analysis obtain all available information about the file.

	output_format=json – causes the output from the analysis to be in the JSON [https://en.wikipedia.org/wiki/JSON] format instead of in the plain format.

The returned object is an instance of retdec.analysis.Analysis.

Waiting For the Analysis To Finish

After the start_analysis() call above returns, the analysis has been automatically started. To wait until it finishes, call wait_until_finished():

analysis.wait_until_finished()

Obtaining the Results of the Analysis

To obtain the output from the analysis, call get_output():

print(analysis.get_output())

For a complete example, take a look at the retdec/tools/fileinfo.py [https://github.com/s3rvac/retdec-python/blob/master/retdec/tools/fileinfo.py] file. It is an implementation of the Fileinfo script.

Test

Access to the testing service [https://retdec.com/api/docs/test.html] is provided by the retdec.test module.

Authentication

To check whether you can authenticate successfully, use retdec.test.Test.auth():

test = retdec.test.Test(api_key='YOUR-API-KEY')
try:
 test.auth()
 print('authentication succeeded')
except retdec.exceptions.AuthenticationError as ex:
 print('authentication failed:', ex)

Parameter Passing

To check that parameters are passed correctly when performing requests to the retdec.com API [https://retdec.com/api/], use retdec.test.Test.echo():

test = retdec.test.Test(api_key='YOUR-API-KEY')
result = test.echo(param='value')
print(result) # Prints {'param': 'value'}.

Scripts

This page describes the retdec-python [https://github.com/s3rvac/retdec-python] scripts and their usage.

Currently, there are two scripts: decompiler and fileinfo. They provide access to the decompilation [https://retdec.com/api/docs/decompiler.html] and file-analyzing [https://retdec.com/api/docs/fileinfo.html] services, respectively.

Authentication

The scripts need to authenticate you to retdec.com [https://retdec.com]. To specify your API key, either use the -k KEY or --api-key KEY parameter:

$ decompiler -k YOUR-API-KEY file.exe

or set the RETDEC_API_KEY environment variable:

$ export RETDEC_API_KEY=YOUR-API-KEY
$ decompiler file.exe

An advantage of the environment variable is that you do not have to specify the API key every time you run a script.

Decompiler

The decompiler script provides access to the decompilation service [https://retdec.com/api/docs/decompiler.html]. It allows you to decompile binary files into a high-level language representation, such as C.

Usage

$ decompiler [OPTIONS] FILE

Output files are stored into the same directory where the input file is located. For example, if the input file is dir/prog.exe, then the decompiled code in the C language is saved as dir/prog.c. You can override the output directory by using the -o/--output-dir parameter.

Options

See the official documentation [https://retdec.com/api/docs/decompiler.html#decompilation-parameters] for more details.

	-a ARCH, --architecture ARCH – Architecture to force when (de)compiling. Supported architectures: x86, arm, thumb, mips, pic32, powerpc.

	-b, --brief – Print fewer information during the decompilation.

	-c COMPILER, --compiler COMPILER – Compiler to use when compiling input C source files. Supported compilers: gcc, clang.

	-C LEVEL, --compiler-optimizations LEVEL – Optimization level to use when compiling input C source files. Supported levels: O0, O1, O2, O3.

	--endian – Endianness of the machine code (bin and raw modes only). Supported endians: little, big.

	-f FORMAT, --file-format FORMAT – File format to force when compiling input C source files. Supported formats: elf, pe.

	-g, --compiler-debug – Compile the input C file with debugging information (i.e. passes the -g flag to the used compiler).

	-s, --compiler-strip – Strip the compiled C file prior its decompilation.

	-k KEY, --api-key KEY – Specifies the API key to be used.

	-l LANGUAGE, --target-language LANGUAGE – Target high-level language. Supported languages: c, py.

	--graph-format FORMAT – Format of the generated call and control-flow graphs. Supported formats: png, svg, pdf.

	-m MODE, --mode MODE – Decompilation mode. Supported modes [https://retdec.com/api/docs/decompiler.html#decompilation-modes]: bin, c, and raw. By default, the script performs an automatic detection based on the extension of the input file.

	-o DIR, --output-dir DIR – Save the outputs into this directory.

	-p FILE, --pdb-file – PDB file associated with the input file.

	-q, --quiet – Print only errors, nothing else (not even progress).

	-V, --version – Print the script and library version.

	--var-names STYLE – Naming style for variables. Supported styles: readable, address, hungarian, simple, and unified.

	-O LEVEL, --optimizations LEVEL – Level of optimizations performed by the decompiler. Supported levels: none, limited, normal, and aggressive.

	-K, --keep-unreach-funcs – Decompile all functions, even if they are not reachable.

	--only-funcs – Decompile only the given functions (a comma-separated list of function names, e.g. func1,func2).

	--only-ranges' – Decompile only the given address ranges (a comma-separated list of address ranges, e.g. 0x100-0x200,0x500-0x600).

	--decoding – What should be decoded in a selective decompilation? Supported types: everything, only.

	--no-addresses – Disable the emission of addresses in comments in the generated code.

	--raw-entry-point – Virtual memory address where execution flow should start in the machine code (raw mode only).

	--raw-section-vma – Address where the section created from the machine code will be placed in virtual memory (raw mode only).

	--ar-index – Index of the object file in the input archive to be decompiled when decompiling an archive.

	--ar-name – Name of the object file in the input archive to be decompiled when decompiling an archive.

	--with-cg – Generate a call graph when the decompilation ends.

	--with-cfgs – Generate call graphs for all functions when the decompilation ends.

	--with-archive – Generate an archive containing all decompilation outputs when the decompilation ends.

Example

$ decompiler -k YOUR-API-KEY file.exe

v23bmYb67R

Waiting for resources (0%)... [OK]
Pre-Processing:
 Obtaining file information (5%)... [OK]
 Unpacking (10%)... [OK]
Front-End:
 Initializing (20%)... [OK]
[..]
Done (100%)...

Downloading:
 - file.c

file.c then contains the decompiled C code.

Fileinfo

The fileinfo script provides access to the file-analyzing service [https://retdec.com/api/docs/fileinfo.html]. It allows you to obtain information about binary files.

Usage

$ fileinfo [OPTIONS] FILE

Options

	-k KEY, --api-key KEY – Specifies the API key to be used.

	-f FORMAT, --output-format – Format in which the output should be printed. Available formats are plain (plain text; the default) and json (JSON [https://en.wikipedia.org/wiki/JSON]).

	-v, --verbose – Print all available information about the file.

	-V, --version – Print the script and library version.

Example

$ fileinfo -k YOUR-API-KEY file.exe

Input file : file.exe
File format : PE
File class : 32-bit
File type : Executable file
Architecture : x86 (or later and compatible)
Endianness : Little endian
Entry point address : 0x4014e0
Entry point offset : 0x8e0
Entry point section name : .text
Entry point section index: 0
Bytes on entry point : 31ed5e89e183e4f05054526860c1040868f0c00408515668
Detected compiler/packer : GCC (x86_64-unknown-linux-gnu) (4.7.2) (100%)

Contributing

Any contributions are welcomed! I will be very glad to get your feedback, pull requests [https://github.com/s3rvac/retdec-python/pulls], issues [https://github.com/s3rvac/retdec-python/issues], or just a simple Thanks. Feel free to contact me for any questions you might have!

Coding Style

The code should be PEP8 [https://www.python.org/dev/peps/pep-0008/] compliant, except for line length, which may be greater than 79 when suitable (but never exceeding 100 characters).

Testing

The code is 100% covered with unit tests. When you make a pull request, please include unit tests for your code to keep the coverage at 100%.

Make Targets

	Project documentation can be generated by running make docs (you need to have sphinx [https://pypi.python.org/pypi/Sphinx] and sphinx_rtd_theme [https://pypi.python.org/pypi/sphinx_rtd_theme] installed).

	To run unit tests, execute make tests (you need to have nose [https://pypi.python.org/pypi/nose] installed).

	Test coverage can be generated by executing make tests-coverage (once again, you need to have nose [https://pypi.python.org/pypi/nose] installed).

	To ensure that the code complies to PEP8 [https://www.python.org/dev/peps/pep-0008/], execute make lint (you need to have flake8 [https://pypi.python.org/pypi/flake8] installed).

See the contents of Makefile [https://github.com/s3rvac/retdec-python/blob/master/Makefile] to for all the possible targets.

Status

A summary of the supported parts of the retdec.com API [https://retdec.com/api/docs/index.html].

Decompiler

The decompilation service.

	Starting a new decompilation [https://retdec.com/api/docs/decompiler.html#starting-a-new-decompilation] ✔

	Decompilation modes [https://retdec.com/api/docs/decompiler.html#decompilation-modes] ✔

	bin ✔

	c ✔

	raw ✔

	Input files [https://retdec.com/api/docs/decompiler.html#input-files] ✔

	input ✔

	pdb ✔

	Decompilation parameters [https://retdec.com/api/docs/decompiler.html#decompilation-parameters] ✔

	Mode-independent parameters [https://retdec.com/api/docs/decompiler.html#mode-independent-parameters] ✔

	target_language ✔

	graph_format ✔

	decomp_var_names ✔

	decomp_optimizations ✔

	decomp_unreach_funcs ✔

	decomp_emit_addresses ✔

	generate_cg ✔

	generate_cfgs ✔

	generate_archive ✔

	Parameters for the bin mode [https://retdec.com/api/docs/decompiler.html#parameters-only-for-the-bin-mode] ✔

	architecture ✔

	endian ✔

	sel_decomp_funcs ✔

	sel_decomp_ranges ✔

	sel_decomp_decoding ✔

	ar_index ✔

	ar_name ✔

	Parameters for the raw mode [https://retdec.com/api/docs/decompiler.html#parameters-only-for-the-raw-mode] ✔

	architecture ✔

	endian ✔

	raw_entry_point ✔

	raw_section_vma ✔

	Parameters for the c mode [https://retdec.com/api/docs/decompiler.html#parameters-only-for-the-c-mode] ✔

	architecture ✔

	file_format ✔

	comp_compiler ✔

	comp_optimizations ✔

	comp_debug ✔

	comp_strip ✔

	Checking status [https://retdec.com/api/docs/decompiler.html#checking-status] ✔

	general (running, finished, etc.) ✔

	completion ✔

	phases ✔

	part ✔

	name ✔

	description ✔

	completion ✔

	warnings ✔

	cg ✔

	cfgs ✔

	archive ✔

	Obtaining outputs [https://retdec.com/api/docs/decompiler.html#obtaining-outputs] ✔

	hll ✔

	dsm ✔

	cg ✔

	cfgs ✔

	archive ✔

	binary ✔

	Error reporting [https://retdec.com/api/docs/decompiler.html#error-reporting] ✔

Fileinfo

The file-analyzing service.

	Starting a new analysis [https://retdec.com/api/docs/fileinfo.html#starting-a-new-analysis] ✔

	Optional parameters [https://retdec.com/api/docs/fileinfo.html#optional-parameters] ✔

	output_format ✔

	verbose ✔

	Checking status [https://retdec.com/api/docs/fileinfo.html#checking-status] ✔

	general (running, finished, etc.) ✔

	Obtaining output [https://retdec.com/api/docs/fileinfo.html#obtaining-output] ✔

	Error reporting [https://retdec.com/api/docs/fileinfo.html#error-reporting] ✔

Test

The testing service.

	Authentication [https://retdec.com/api/docs/test.html#authentication] ✔

	Parameter passing [https://retdec.com/api/docs/test.html#parameter-passing] ✔

 Python Module Index

 a |
 c |
 d |
 e |
 f |
 r |
 s |
 t

 		 	

 		
 a	

 	
 	
 retdec.analysis	

 		 	

 		
 c	

 	
 	
 retdec.conn	

 		 	

 		
 d	

 	
 	
 retdec.decompilation	

 	
 	
 retdec.decompiler	

 		 	

 		
 e	

 	
 	
 retdec.exceptions	

 		 	

 		
 f	

 	
 	
 retdec.file	

 	
 	
 retdec.fileinfo	

 		 	

 		
 r	

 	
 	
 retdec	

 	
 	
 retdec.resource	

 		 	

 		
 s	

 	
 	
 retdec.service	

 		 	

 		
 t	

 	
 	
 retdec.test	

 	[image: -]
 	
 retdec.tools	

 	
 	
 retdec.tools.decompiler	

 	
 	
 retdec.tools.fileinfo	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_decompilation_param_when_given() (in module retdec.tools.decompiler)

 	Analysis (class in retdec.analysis)

 	AnalysisFailedError

 	api_key (retdec.service.Service attribute)

 	api_url (retdec.service.Service attribute)

 	APIConnection (class in retdec.conn)

 	
 	archive_generation_has_failed() (retdec.decompilation.Decompilation method)

 	archive_generation_has_finished() (retdec.decompilation.Decompilation method)

 	archive_generation_has_succeeded() (retdec.decompilation.Decompilation method)

 	ArchiveGenerationFailedError

 	auth() (retdec.test.Test method)

 	AuthenticationError

B

 	
 	BAR_EMPTY_CHAR (retdec.tools.decompiler.ProgressBarDisplayer attribute)

 	
 	BAR_FILL_CHAR (retdec.tools.decompiler.ProgressBarDisplayer attribute)

 	BAR_LENGTH (retdec.tools.decompiler.ProgressBarDisplayer attribute)

C

 	
 	cfg_generation_has_failed() (retdec.decompilation.Decompilation method)

 	cfg_generation_has_finished() (retdec.decompilation.Decompilation method)

 	cfg_generation_has_succeeded() (retdec.decompilation.Decompilation method)

 	CFGGenerationFailedError

 	cg_generation_has_failed() (retdec.decompilation.Decompilation method)

 	
 	cg_generation_has_finished() (retdec.decompilation.Decompilation method)

 	cg_generation_has_succeeded() (retdec.decompilation.Decompilation method)

 	CGGenerationFailedError

 	code (retdec.exceptions.UnknownAPIError attribute)

 	completion (retdec.decompilation.DecompilationPhase attribute)

 	ConnectionError

D

 	
 	Decompilation (class in retdec.decompilation)

 	DecompilationFailedError

 	DecompilationPhase (class in retdec.decompilation)

 	Decompiler (class in retdec.decompiler)

 	DEFAULT_API_URL (in module retdec)

 	description (retdec.decompilation.DecompilationPhase attribute)

 	(retdec.exceptions.UnknownAPIError attribute)

 	display_decompilation_progress() (retdec.tools.decompiler.NoProgressDisplayer method)

 	(retdec.tools.decompiler.ProgressBarDisplayer method)

 	(retdec.tools.decompiler.ProgressDisplayer method)

 	(retdec.tools.decompiler.ProgressLogDisplayer method)

 	
 	display_download_progress() (in module retdec.tools.decompiler)

 	(retdec.tools.decompiler.NoProgressDisplayer method)

 	(retdec.tools.decompiler.ProgressBarDisplayer method)

 	(retdec.tools.decompiler.ProgressDisplayer method)

 	(retdec.tools.decompiler.ProgressLogDisplayer method)

 	display_generation_failure() (retdec.tools.decompiler.NoProgressDisplayer method)

 	(retdec.tools.decompiler.ProgressBarDisplayer method)

 	(retdec.tools.decompiler.ProgressDisplayer method)

 	(retdec.tools.decompiler.ProgressLogDisplayer method)

E

 	
 	echo() (retdec.test.Test method)

F

 	
 	File (class in retdec.file)

 	
 	Fileinfo (class in retdec.fileinfo)

 	funcs_with_cfg (retdec.decompilation.Decompilation attribute)

G

 	
 	get_archive_generation_error() (retdec.decompilation.Decompilation method)

 	get_cfg_generation_error() (retdec.decompilation.Decompilation method)

 	get_cg_generation_error() (retdec.decompilation.Decompilation method)

 	get_completion() (retdec.decompilation.Decompilation method)

 	get_dsm_code() (retdec.decompilation.Decompilation method)

 	get_error() (retdec.resource.Resource method)

 	
 	get_file() (retdec.conn.APIConnection method)

 	get_hll_code() (retdec.decompilation.Decompilation method)

 	get_output() (retdec.analysis.Analysis method)

 	get_output_dir() (in module retdec.tools.decompiler)

 	get_phases() (retdec.decompilation.Decompilation method)

 	get_progress_displayer() (in module retdec.tools.decompiler)

H

 	
 	has_failed() (retdec.resource.Resource method)

 	
 	has_finished() (retdec.resource.Resource method)

 	has_succeeded() (retdec.resource.Resource method)

I

 	
 	id (retdec.resource.Resource attribute)

 	InvalidValueError

 	
 	is_pending() (retdec.resource.Resource method)

 	is_running() (retdec.resource.Resource method)

M

 	
 	main() (in module retdec.tools.decompiler)

 	(in module retdec.tools.fileinfo)

 	message (retdec.exceptions.UnknownAPIError attribute)

 	
 	MissingAPIKeyError

 	MissingParameterError

 	mode (retdec.file.File attribute)

N

 	
 	name (retdec.decompilation.DecompilationPhase attribute)

 	(retdec.file.File attribute)

 	
 	NoProgressDisplayer (class in retdec.tools.decompiler)

 	NoSuchCFGError

O

 	
 	OutputNotRequestedError

P

 	
 	parse_args() (in module retdec.tools.decompiler)

 	(in module retdec.tools.fileinfo)

 	part (retdec.decompilation.DecompilationPhase attribute)

 	
 	ProgressBarDisplayer (class in retdec.tools.decompiler)

 	ProgressDisplayer (class in retdec.tools.decompiler)

 	ProgressLogDisplayer (class in retdec.tools.decompiler)

R

 	
 	Resource (class in retdec.resource)

 	retdec (module)

 	retdec.analysis (module)

 	retdec.conn (module)

 	retdec.decompilation (module)

 	retdec.decompiler (module)

 	retdec.exceptions (module)

 	retdec.file (module)

 	
 	retdec.fileinfo (module)

 	retdec.resource (module)

 	retdec.service (module)

 	retdec.test (module)

 	retdec.tools (module)

 	retdec.tools.decompiler (module)

 	retdec.tools.fileinfo (module)

 	RetdecError

S

 	
 	save_archive() (retdec.decompilation.Decompilation method)

 	save_binary() (retdec.decompilation.Decompilation method)

 	save_cfg() (retdec.decompilation.Decompilation method)

 	save_cg() (retdec.decompilation.Decompilation method)

 	save_dsm_code() (retdec.decompilation.Decompilation method)

 	save_hll_code() (retdec.decompilation.Decompilation method)

 	
 	send_get_request() (retdec.conn.APIConnection method)

 	send_post_request() (retdec.conn.APIConnection method)

 	Service (class in retdec.service)

 	should_download_output_binary_file() (in module retdec.tools.decompiler)

 	start_analysis() (retdec.fileinfo.Fileinfo method)

 	start_decompilation() (retdec.decompiler.Decompiler method)

T

 	
 	Test (class in retdec.test)

U

 	
 	UnknownAPIError

W

 	
 	wait_until_archive_is_generated() (retdec.decompilation.Decompilation method)

 	wait_until_cfg_is_generated() (retdec.decompilation.Decompilation method)

 	wait_until_cg_is_generated() (retdec.decompilation.Decompilation method)

 	
 	wait_until_finished() (retdec.analysis.Analysis method)

 	(retdec.decompilation.Decompilation method)

 	warnings (retdec.decompilation.DecompilationPhase attribute)

retdec.tools package

Submodules

retdec.tools.decompiler module

A tool for decompilation of files. It uses the library.

	
class retdec.tools.decompiler.ProgressDisplayer

	Bases: object

Base class of progress displayers.

	
display_decompilation_progress(d)

	Displays or updates progress of the given decompilation.

	
display_download_progress(file_name)

	Displays progress of downloading file with the given name.

	
display_generation_failure(what, reason)

	Displays a warning message that what failed to be generated
because of reason.

	
class retdec.tools.decompiler.ProgressBarDisplayer

	Bases: retdec.tools.decompiler.ProgressDisplayer

Displays a progress bar during decompilation.

	
BAR_LENGTH = 40

	Length of the progress bar (in characters).

	
BAR_FILL_CHAR = '#'

	Character to be used as the fill symbol.

	
BAR_EMPTY_CHAR = ' '

	Character to be used as the empty symbol.

	
display_decompilation_progress(d)

	

	
display_download_progress(file_name)

	

	
display_generation_failure(what, reason)

	

	
class retdec.tools.decompiler.ProgressLogDisplayer

	Bases: retdec.tools.decompiler.ProgressDisplayer

Displays a progress log during decompilation.

	
display_decompilation_progress(d)

	

	
display_download_progress(file_name)

	

	
display_generation_failure(what, reason)

	

	
class retdec.tools.decompiler.NoProgressDisplayer

	Bases: retdec.tools.decompiler.ProgressDisplayer

Displays nothing.

	
display_decompilation_progress(d)

	

	
display_download_progress(file)

	

	
display_generation_failure(what, reason)

	

	
retdec.tools.decompiler.parse_args(argv)

	Parses the given list of arguments.

	
retdec.tools.decompiler.get_output_dir(args)

	Returns an absolute path to a directory where the output files should be
saved.

	
retdec.tools.decompiler.get_progress_displayer(args)

	Returns a proper progress displayer based on the arguments provided by
the user.

	
retdec.tools.decompiler.display_download_progress(displayer, file_path)

	Displays progress of downloading the given file.

	
retdec.tools.decompiler.add_decompilation_param_when_given(args, params, param_name)

	Adds a parameter with param_name from args to params, provided
that the parameter is set.

	
retdec.tools.decompiler.should_download_output_binary_file(args)

	Should the compiled version of the input C file be downloaded?

	
retdec.tools.decompiler.main(argv=None)

	Runs the tool.

	Parameters:	argv (list) – Tool arguments.

If argv is None, sys.argv is used.

retdec.tools.fileinfo module

A tool for analysis of binary files. It uses the library.

	
retdec.tools.fileinfo.parse_args(argv)

	Parses the given list of arguments.

	
retdec.tools.fileinfo.main(argv=None)

	Runs the tool.

	Parameters:	argv (list) – Tool arguments.

If argv is None, sys.argv is used.

Module contents

Tools that use the library to analyze and decompile files.

retdec package

Subpackages

	retdec.tools package
	Submodules

	retdec.tools.decompiler module

	retdec.tools.fileinfo module

	Module contents

Submodules

retdec.analysis module

A representation of fileinfo analyses.

	
class retdec.analysis.Analysis(id, conn)

	Bases: retdec.resource.Resource

A representation of a fileinfo analysis.

	
wait_until_finished(on_failure=<class 'retdec.exceptions.AnalysisFailedError'>)

	Waits until the analysis is finished.

	Parameters:	on_failure (callable) – What should be done when the analysis
fails?

If on_failure is None, nothing is done when the analysis fails.
Otherwise, it is called with the error message. If the returned value
is an exception, it is raised.

	
get_output()

	Obtains and returns the output from the analysis (str).

retdec.conn module

API connection.

	
class retdec.conn.APIConnection(base_url, api_key)

	Bases: object

Connection to the API.

	Parameters:	
	base_url (str) – Base URL from which all subsequent URLs are
constructed.

	api_key (str) – API key to be used for authentication.

The methods of this class may raise the following exceptions:

	ConnectionError: When there is a connection error.

	AuthenticationError: When the authentication fails.

	UnknownAPIError: When there is an API error other than failed
authentication.

	
send_get_request(path='', params=None)

	Sends a GET request to the given path with the given parameters.

	Parameters:	
	path (str) – Path to which the request should be sent.

	params (dict) – Request parameters.

	Returns:	Response from the API (parsed JSON).

If path is the empty string, it sends the request to the base URL
from which the connection was initialized.

	
send_post_request(path='', params=None, files=None)

	Sends a POST request to the given path with the given parameters.

	Parameters:	
	path (str) – Path to which the request should be sent.

	params (dict) – Request parameters.

	files (dict) – Request files.

	Returns:	Response from the API (parsed JSON).

If path is the empty string, it sends the request to the base URL
from which the connection was initialized.

	
get_file(path='', params=None)

	GETs a file from the given path with the given parameters.

	Parameters:	
	path (str) – Path to which the request should be sent.

	params (dict) – Request parameters.

	Returns:	File from path (File).

If path is the empty string, it sends the request to the base URL
from which the connection was initialized.

retdec.decompilation module

A representation of decompilations.

	
class retdec.decompilation.DecompilationPhase(name, part, description, completion, warnings)

	Bases: object

Phase of a decompilation.

	Parameters:	
	name (str) – Name of the phase.

	part (str) – Part into which the phase belongs.

	description (str) – Description of the phase.

	completion (int) – What percentage of the decompilation has been
completed?

	warnings (list) – A list of warnings that were produced by the
decompiler in the phase. Each warning is a string.

part may be None if the phase does not belong to any part.

	
name

	Name of the phase (str).

	
part

	Part to which the phase belongs (str).

May be None if the phase does not belong to any part.

	
description

	Description of the phase (str).

	
completion

	Completion (in percentages, 0-100).

	
warnings

	A list of warnings that were produced by the decompiler in the
phase.

Each warning is a string.

	
class retdec.decompilation.Decompilation(id, conn)

	Bases: retdec.resource.Resource

A representation of a decompilation.

	
get_completion()

	How much of the decompilation has been completed (in percentage)?

It is an int between 0 and 100.

	
get_phases()

	Obtains and returns the list of phases
(DecompilationPhase).

	
wait_until_finished(callback=None, on_failure=<class 'retdec.exceptions.DecompilationFailedError'>)

	Waits until the decompilation is finished.

	Parameters:	
	callback (callable) – Function to be called when the status of the
decompilation is changed or when it finishes.

	on_failure (callable) – What should be done when the decompilation
fails?

If callback is not None, it is called with the decompilation as
its argument when the status of the decompilation is changed or when it
finishes.

If on_failure is None, nothing is done when the decompilation
fails. Otherwise, it is called with the error message. If the returned
value is an exception, it is raised.

	
get_hll_code()

	Obtains and returns the decompiled code in the high-level language
(str).

	
save_hll_code(directory=None)

	Saves the decompiled code in the high-level language to the given
directory.

	Parameters:	directory (str) – Path to a directory in which the decompiled code
will be stored.

	Returns:	Path to the saved file (str).

If directory is None, the current working directory is used.

	
get_dsm_code()

	Obtains and returns the disassembled input file in assembly-like
syntax (str).

	
save_dsm_code(directory=None)

	Saves the disassembled input file in assembly-like syntax to the
given directory.

	Parameters:	directory (str) – Path to a directory in which the file will be
stored.

	Returns:	Path to the saved file (str).

If directory is None, the current working directory is used.

	
cg_generation_has_finished()

	Checks if the call-graph generation has finished.

	Raises:	OutputNotRequestedError – When the call graph was not requested
to be generated.

	
cg_generation_has_succeeded()

	Checks if the call-graph generation has succeeded.

	Raises:	OutputNotRequestedError – When the call graph was not requested
to be generated.

	
cg_generation_has_failed()

	Checks if the call graph has failed to generate.

	Raises:	OutputNotRequestedError – When the call graph was not requested
to be generated.

	
get_cg_generation_error()

	Returns the reason why the call graph failed to generate.

	Raises:	OutputNotRequestedError – When the call graph was not requested
to be generated.

If the call-graph generation has not failed, it returns None.

	
wait_until_cg_is_generated(on_failure=<class 'retdec.exceptions.CGGenerationFailedError'>)

	Waits until the call graph is generated.

	Parameters:	on_failure (callable) – What should be done when the generation
fails?

	Raises:	OutputNotRequestedError – When the call graph was not requested
to be generated.

If on_failure is None, nothing is done when the generation fails.
Otherwise, it is called with the error message. If the returned value
is an exception, it is raised.

	
save_cg(directory=None)

	Saves the call graph to the given directory.

	Parameters:	directory (str) – Path to a directory in which the file will be
stored.

	Returns:	Path to the saved file (str).

If directory is None, the current working directory is used.

	
funcs_with_cfg

	A list of names of functions having a control-flow graph.

The returned list does not depend on the control-flow-graph-generation
status. It always returns the same function names, disregarding whether
their control-flow graph has or has not been generated.

The returned list is ordered by function names.

	Raises:	OutputNotRequestedError – When control-flow graphs were not
requested to be generated.

	
cfg_generation_has_finished(func)

	Checks if the generation of a control-flow graph for the given
function has finished.

	Parameters:	func (str) – Name of the function.

	Raises:	
	OutputNotRequestedError – When control-flow graphs were not
requested to be generated.

	NoSuchCFGError – When there is no control-flow graph for the
given function.

	
cfg_generation_has_succeeded(func)

	Checks if the generation of a control-flow graph for the given
function has succeeded.

	Parameters:	func (str) – Name of the function.

	Raises:	
	OutputNotRequestedError – When control-flow graphs were not
requested to be generated.

	NoSuchCFGError – When there is no control-flow graph for the
given function.

	
cfg_generation_has_failed(func)

	Checks if the generation of a control-flow graph for the given
function has failed.

	Parameters:	func (str) – Name of the function.

	Raises:	
	OutputNotRequestedError – When control-flow graphs were not
requested to be generated.

	NoSuchCFGError – When there is no control-flow graph for the
given function.

	
get_cfg_generation_error(func)

	Returns the reason why the control-flow graph for the given function
failed to generate.

	Parameters:	func (str) – Name of the function.

	Raises:	
	OutputNotRequestedError – When control-flow graphs were not
requested to be generated.

	NoSuchCFGError – When there is no control-flow graph for the
given function.

If the control-flow-graph generation has not failed, it returns
None.

	
wait_until_cfg_is_generated(func, on_failure=<class 'retdec.exceptions.CFGGenerationFailedError'>)

	Waits until the control-flow graph for the given function is
generated.

	Parameters:	
	func (str) – Name of the function.

	on_failure (callable) – What should be done when the generation
fails?

	Raises:	
	OutputNotRequestedError – When control-flow graphs were not
requested to be generated.

	NoSuchCFGError – When there is no control-flow graph for the
given function.

If on_failure is None, nothing is done when the generation fails.
Otherwise, it is called with the error message. If the returned value
is an exception, it is raised.

	
save_cfg(func, directory=None)

	Saves the control-flow graph for the given function to the given
directory.

	Parameters:	
	func (str) – Name of the function.

	directory (str) – Path to a directory in which the file will be
stored.

	Returns:	Path to the saved file (str).

If directory is None, the current working directory is used.

	
archive_generation_has_finished()

	Checks if the archive generation has finished.

	Raises:	OutputNotRequestedError – When the archive was not requested to
be generated.

	
archive_generation_has_succeeded()

	Checks if the archive generation has succeeded.

	Raises:	OutputNotRequestedError – When the archive was not requested to
be generated.

	
archive_generation_has_failed()

	Checks if the archive has failed to generate.

	Raises:	OutputNotRequestedError – When the archive was not requested to
be generated.

	
get_archive_generation_error()

	Returns the reason why the archive failed to generate.

	Raises:	OutputNotRequestedError – When the archive was not requested to
be generated.

If the archive has not failed, it returns None.

	
wait_until_archive_is_generated(on_failure=<class 'retdec.exceptions.ArchiveGenerationFailedError'>)

	Waits until the archive containing all outputs from the
decompilation is generated.

	Parameters:	on_failure (callable) – What should be done when the generation
fails?

	Raises:	OutputNotRequestedError – When the archive was not requested to
be generated.

If on_failure is None, nothing is done when the generation fails.
Otherwise, it is called with the error message. If the returned value
is an exception, it is raised.

	
save_archive(directory=None)

	Saves the archive containing all outputs from the decompilation
to the given directory.

	Parameters:	directory (str) – Path to a directory in which the file will be
stored.

	Returns:	Path to the saved file (str).

If directory is None, the current working directory is used.

	
save_binary(directory=None)

	Saves the compiled version of the input C file (provided that the
input was a C file) to the given directory.

	Parameters:	directory (str) – Path to a directory in which the file will be
stored.

	Returns:	Path to the saved file (str).

If directory is None, the current working directory is used.

retdec.decompiler module

Access to the decompiler (decompilation of files).

	
class retdec.decompiler.Decompiler(*, api_key=None, api_url=None)

	Bases: retdec.service.Service

Access to the decompilation service.

	
start_decompilation(**kwargs)

	Starts a decompilation with the given parameters.

	Parameters:	
	input_file (str or file-like object) – File to be analyzed (required).

	pdb_file (str or file-like object) – A PDB file associated with input_file containing
debugging information.

	mode (str) – Decompilation mode.

	target_language (str) – Target high-level language.

	graph_format (str) – Format of the generated call and control-flow
graphs.

	decomp_var_names (str) – Naming style for variables.

	decomp_optimizations (str) – Level of optimizations performed by the
decompiler.

	decomp_unreach_funcs (bool) – Should all functions be decompiled, even
if they are not reachable from the main function?

	decomp_emit_addresses (bool) – Should addresses in comments be emitted
in the generated code?

	architecture (str) – Architecture. The precise meaning depends on the
used mode.

	file_format (str) – File format. File format to be used when compiling
input C source files.

	comp_compiler (str) – Compiler to be used when compiling input C source
files.

	comp_optimizations (str) – Compiler optimizations to be used when
compiling input C source files.

	comp_debug (bool) – Should the input C source file be compiled with
debugging information?

	comp_strip (bool) – Should the compiled input C source file be stripped?

	sel_decomp_funcs (str/iterable) – Decompile only the selected functions. It can
be either an iterable of function names (e.g. ['func1', 'func2']) or
a string with comma-separated function names (e.g. 'func1,
func2').

	sel_decomp_ranges (str/iterable) – Decompile only the selected address ranges.
It can be either an iterable of ranges (e.g. [(0x100, 0x200),
(0x400, 0x500)]) or a string with comma-separated ranges (e.g.
'0x100-0x200,0x400-0x500').

	sel_decomp_decoding (str) – What instructions should be decoded when
either sel_decomp_funcs or sel_decomp_ranges is given?

	endian (str) – Endianness of the machine code ('little' or
'big'). Only for the raw mode.

	raw_entry_point (str) – Virtual memory address where execution
flow should start in the raw machine code. Only for the raw
mode.

	raw_section_vma (str) – Address where the section created from the raw
machine code will be placed in virtual memory. Only for the
raw mode.

	ar_index (int/str) – Index of the object file in the input archive to be
decompiled when decompiling an archive.

	ar_name (str) – Name of the object file in the input archive to be
decompiled when decompiling an archive.

	generate_cg (bool) – Should a call graph be generated?

	generate_cfgs (bool) – Should control-flow graphs for all functions be
generated?

	generate_archive (bool) – Should an archive containing all outputs from
the decompilation be generated?

	Returns:	Started decompilation
(Decompilation).

If mode is not given, it is automatically determined based on the
name of input_file. If the input file ends with .c or .C,
the mode is set to c. Otherwise, the mode is set to bin.

See the official documentation [https://retdec.com/api/docs/decompiler.html#decompilation-parameters]
for more information about the parameters.

retdec.exceptions module

Custom exceptions raised by the library.

	
exception retdec.exceptions.RetdecError

	Bases: Exception

Base class of all custom exceptions raised by the library.

	
exception retdec.exceptions.MissingAPIKeyError

	Bases: retdec.exceptions.RetdecError

Exception raised when an API key is missing.

	
exception retdec.exceptions.MissingParameterError(name)

	Bases: retdec.exceptions.RetdecError

Exception raised when a required parameter is not set.

	Parameters:	name (str) – Name of the missing parameter.

	
exception retdec.exceptions.InvalidValueError(name, value)

	Bases: retdec.exceptions.RetdecError

Exception raised when a parameter has an invalid value.

	Parameters:	
	name (str) – Name of the parameter whose value is invalid.

	value – The invalid value.

	
exception retdec.exceptions.AuthenticationError

	Bases: retdec.exceptions.RetdecError

Exception raised when authentication with the provided API key fails.

	
exception retdec.exceptions.ConnectionError

	Bases: retdec.exceptions.RetdecError

Exception raised when there is a connection error.

	
exception retdec.exceptions.AnalysisFailedError

	Bases: retdec.exceptions.RetdecError

Exception raised when a fileinfo analysis has failed.

	
exception retdec.exceptions.DecompilationFailedError

	Bases: retdec.exceptions.RetdecError

Exception raised when a decompilation has failed.

	
exception retdec.exceptions.OutputNotRequestedError

	Bases: retdec.exceptions.RetdecError

Exception raised when an output is queried which was not requested to be
generated.

	
exception retdec.exceptions.CGGenerationFailedError

	Bases: retdec.exceptions.RetdecError

Exception raised when the generation of a call graph fails.

	
exception retdec.exceptions.CFGGenerationFailedError

	Bases: retdec.exceptions.RetdecError

Exception raised when the generation of a control-flow graph fails.

	
exception retdec.exceptions.NoSuchCFGError(func)

	Bases: retdec.exceptions.RetdecError

Exception raised when a control-flow graph for a non-existing function
is requested.

	Parameters:	func (str) – Name of the function whose control-flow graph was
requested.

	
exception retdec.exceptions.ArchiveGenerationFailedError

	Bases: retdec.exceptions.RetdecError

Exception raised when the generation of an archive fails.

	
exception retdec.exceptions.UnknownAPIError(code, message, description)

	Bases: retdec.exceptions.RetdecError

Exception raised when there is an unknown API error.

	Parameters:	
	code (int) – Error code.

	message (str) – Short message describing what went wrong.

	description (str) – Longer description of what went wrong.

	
code

	Error code (int).

	
message

	Short message describing what went wrong (str).

	
description

	Longer description of what went wrong (str).

retdec.file module

Representation of a file.

	
class retdec.file.File(file, name=None)

	Bases: object

Representation of a file.

	Parameters:	
	object file (str/file-like) – Either path to the file (str) or an
opened file (a file-like object).

	name (str) – Name of the file to be used.

When name is not given or it is None, the name is taken from file.
You can use name to set a custom file name that may be different from the
real file’s name.

	
name

	Name of the file (str).

May be None if the file has no name.

	
mode

	Mode in which the file is opened.

If the file does not have a mode, it returns None.

retdec.fileinfo module

Access to the file-analyzing service (fileinfo).

	
class retdec.fileinfo.Fileinfo(*, api_key=None, api_url=None)

	Bases: retdec.service.Service

Access to the file-analyzing service.

	
start_analysis(**kwargs)

	Starts an analysis with the given parameters.

	Parameters:	
	input_file (str or file-like object) – File to be analyzed (required).

	output_format (str) – Format of the output from the analysis.

	verbose (bool) – Should the analysis produce a detailed output?

	Returns:	Started analysis (Analysis).

retdec.resource module

Base class of all resources.

	
class retdec.resource.Resource(id, conn)

	Bases: object

Base class of all resources.

	Parameters:	
	id (str) – Unique identifier of the resource.

	conn (retdec.conn.APIConnection) – Connection to the API to be used for
sending API requests.

	
id

	Unique identifier of the resource.

	
is_pending()

	Is the resource in a pending state?

A resource is pending if it is scheduled to run but has not started
yet.

	
is_running()

	Is the resource currently running?

	
has_finished()

	Has the resource finished?

	
has_succeeded()

	Has the resource succeeded?

	
has_failed()

	Has the resource failed?

For finished resources, this is always the negation of
has_succeeded().

	
get_error()

	Returns the reason why the resource failed.

If the resource has not failed, it returns None.

retdec.service module

Base class of all services.

	
class retdec.service.Service(*, api_key=None, api_url=None)

	Bases: object

Base class of all services.

	Parameters:	
	api_key (str) – API key to be used for authentication.

	api_url (str) – URL to the API.

	
api_key

	API key that is being used for authentication (str).

	
api_url

	URL to the API (str).

retdec.test module

Access to the testing service.

	
class retdec.test.Test(*, api_key=None, api_url=None)

	Bases: retdec.service.Service

Access to the testing service.

	
auth()

	Tries to authenticate.

	Raises:	AuthenticationError – When the authentication fails.

Does nothing when the authentication succeeds.

	
echo(**kwargs)

	Echoes the given parameters.

	Returns:	Echoed kwargs (dict).

	Raises:	AuthenticationError – When the authentication fails.

Module contents

The main package of a Python library and tools providing easy access to the
retdec.com [https://retdec.com] decompilation service through their public
REST API [https://retdec.com/api/].

	
retdec.DEFAULT_API_URL = 'https://retdec.com/service/api'

	Default API URL.

retdec

	retdec package
	Subpackages
	retdec.tools package
	Submodules

	retdec.tools.decompiler module

	retdec.tools.fileinfo module

	Module contents

	Submodules

	retdec.analysis module

	retdec.conn module

	retdec.decompilation module

	retdec.decompiler module

	retdec.exceptions module

	retdec.file module

	retdec.fileinfo module

	retdec.resource module

	retdec.service module

	retdec.test module

	Module contents

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome To retdec-python's Documentation!

 		Quickstart

 		Requirements

 		Installation

 		Prerequisites

 		Library vs Scripts

 		Library

 		Organization

 		Authentication

 		Error Handling

 		Decompiler

 		Creating a Decompiler

 		Starting a Decompilation

 		Waiting For the Decompilation To Finish

 		Downloading Outputs

 		Fileinfo

 		Creating an Analyzer

 		Starting an Analysis

 		Waiting For the Analysis To Finish

 		Obtaining the Results of the Analysis

 		Test

 		Authentication

 		Parameter Passing

 		Scripts

 		Authentication

 		Decompiler

 		Usage

 		Options

 		Example

 		Fileinfo

 		Usage

 		Options

 		Example

 		Contributing

 		Coding Style

 		Testing

 		Make Targets

 		Status

 		Decompiler

 		Fileinfo

 		Test

_static/comment.png

_static/down.png

_static/up-pressed.png

